长安销售二氧化碳 不支持燃烧
  • 长安销售二氧化碳 不支持燃烧
  • 长安销售二氧化碳 不支持燃烧
  • 长安销售二氧化碳 不支持燃烧

产品描述

直径89-219mm 容积0.8L-40L 瓶体高度197-1315mm 瓶体重量1.6-48.2KG 壁厚3.2-5.7mm 材质37Mn 34CrMo4 工作压力15Mpa 20Mpa 测试压力22.5Mpa 30Mpa 标准GB/T5099.3 ISO9809-3 EN ISO9809-3 EN ISO9809-1 包装无缝钢瓶密封 执行标准国标 分子式CO2 用途工业/实验室 物理状态液态 性状无色无味 是否危险化学品 纯度99.995% 99.999% 等级优等 规格40L 类型低温储罐
二氧化碳是一种在常温下无色无味无臭的气体。化学式为CO₂,式量44.01,碳氧化物之一,俗名碳酸气,也称碳酸酐或碳酐。常温下是一种无色无味气体,密度比空气略大,溶于水(1体积H₂O可溶解1体积CO₂),并生成碳酸。固态二氧化碳俗称干冰,升华时可吸收大量热,因而用作制冷剂,如人工降雨,也常在舞美中用于制造烟雾(干冰升华吸热,液化空气中的水蒸气)。
循环系统的变化
一定程度的PaO2降低和PaCO2升高,可外周化学感受器(颈动脉体和主动脉体),使心跳加快、心肌收缩力加强、血压升高;亦可反射性地引起交感兴奋,肾上腺髓质分泌增加,从而使心跳加快、心肌收缩力加强、血压升高,皮肤及腹腔内脏血管收缩,而心和脑血管扩张。这些变化具有代偿意义。一定程度的CO2潴留对外周小血管也有直接作用,使其扩张(肺、肾动脉除外),皮肤血管扩张可使肢体末梢温暖红润,伴有大汗;睑结膜和脑血管扩张充血。严重的缺氧和CO2潴留可直接抑制心血管和心脏活动,加重血管扩张,导致血压下降,心肌收缩力降低等不良后果。缺O2和CO2潴留均能引起肺动脉小血管收缩而增加肺循环阻力,导致肺动脉高压和增加右心负担。
呼吸衰竭常伴发心力衰竭,尤其是右心衰竭,其主要原因为肺动脉高压和心肌受损。发生机理与严重缺氧密切相关。高碳酸血症还可因酸中毒,加重对心脏的损害。
长安销售二氧化碳
CO2气体保护焊的工艺参数
CO2气体保护焊时,由于熔滴过渡的不同形式,需采用不同的焊接工艺参数
(1)短路过渡时的工艺参数 短路过渡焊接采用细丝焊,常用焊丝直径为Φ0.6~1.2,随着焊丝直径,飞溅颗粒都相应。短路过渡焊接时,主要的焊接工艺参数有电弧电压、焊接电流、焊接速度,气体流量及纯度,焊丝深出长度。
1) 电弧电压及焊接电流 电弧电压是短路过渡时的关键参数,短路过渡的特点是采用低电压。电弧电压与焊接电流相匹配,可以获得飞溅小,焊缝成形良好的稳定焊接过程。Φ1.2的一般参数为 电压 19伏;电流120~135。
2) 焊接速度 随着焊接速度的增加,焊缝熔宽、熔深和余高均减小。焊速过高,*产生咬边和未焊透等缺陷,同时气体保护效果变坏,易产生气孔。焊接速度过低,易产生烧穿,组织粗大等缺陷,并且变形,生产效率降低。因此,应根据生产实践对焊接速度进行正确的选择。通常半自动焊的速度不**过0.5m/min,自动焊的速度不**过1.5m/min。
3) 气体的流量及纯度 气体流量过小时,保护气体的挺度不足,焊缝*产生气孔等缺陷;气体流量过大时,不仅浪费气体,而且氧化性增强,焊缝表面上会形成一层暗灰色的氧化皮,使焊缝质量下降。为保证焊接区免受空气的污染,当焊接电流大或焊接速度快,焊丝伸出长度较长以及室外焊接时,应气体流量。通常细丝焊接时,气体流量在15~25L/min之间。CO2气体的纯度不得低于99.5%。同时,当气瓶内的压力低于1Mpa,应停止使用,以免产生气孔。这是因为气瓶内压力降低时,溶于液态CO2中的水分汽化量也随之,从而混入CO2气体中的水蒸气越多。
4) 焊丝伸出长度 由于短路过渡均采用细焊丝,所以焊丝伸出长度上所产生的电阻热影响很大。伸出长度增加,焊丝上的电阻热增加,焊丝熔化加快,生产率提高。但伸出长度过大时,焊丝*发生过热而成段熔断,飞溅严重,焊接过程不稳定。同时伸出后,喷嘴与焊件间的距离亦,因此气体保护效果变差。但伸出长度过小势必缩短喷嘴与焊件间的距离,飞溅金属*堵塞喷嘴。合适的伸出长度应为焊丝直径的10~12倍,细丝焊时以8~15mm为宜。
长安销售二氧化碳
一种储存二氧化碳气的工具,一般使用在化学,,食品等行业。
按规格型号上可分为4L到40L不等,一般40L以下的使用在食品行业较多。
二氧化碳气瓶从规格型号上可分为:4L,5L,8L,10L,12L,15L,40L的。
一般像40L以下的都是使用在食品行业的较多,如:扎啤机,售酒机,酒店自酿啤酒设备,微型自酿啤酒设备,啤酒发酵教学试验设备,可口可乐的生产过程等。
二氧化碳钢瓶属高压容器,其临界温度为31.1℃,在临界温度以上,气体是不能液化的。若液体二氧化碳钢瓶温度**31.1℃,则无论压力多大,二氧化碳都始终保持气态而不能液化,钢瓶压力将急剧升高,以致有可能出现爆炸危险。因此当储运和使用钢瓶二氧化碳时,使用150kg/cm2或200kg/cm2级钢瓶,并经严格检查合格后才能应用,严格遵守原劳动总局“气瓶安全监察规程”中的有关规定,储运过程中严格防止曝晒,严禁敲击、碰撞、烘烤、不得靠近热源。   二氧化碳通过气瓶减压时,会吸收大量的热,以致使气瓶结霜甚至可能将阀蕊冻结住。当碳酸阀被冻结时,不能敲击或用火烘烤,只能用自来水淋洗给热。 


二氧化碳气瓶公称工作压力为15MPa,充装结束时的压力也不过是7-8MPa,远低于公称工作压力,为什*强调“严禁**装”,按0.6kg/L标准充装? 答:在瓶装气体中属于高压液化气体,其临界温度为31℃,当温度低于31℃时加压即可液化,当温度等于或**31℃,瓶内液态二氧化碳就转化为气态二氧化碳。 按0.6kg/L标准充装二氧化碳时,在温度接近31℃时,瓶内呈现的压力是气一液共存状态下,液体界面上的饱和蒸气为7.39MPa。当温度达到或**过31℃时,则发生液体向气体的相变,瓶内压力不再是二氧化碳饱和蒸气压的延伸,而是液态二氧化碳大量汽化而骤然上升的压力。此时表征瓶内的压力状况,实质上和气体一样。当温度继续升到54℃时,瓶内压力约增到15MPa,与气瓶公称工作压力相当。由于瓶装二氧化碳具有这些特点,为保证气瓶在充装、储存、运输和使用时的安全,应严格按规定的充装系统进行充装。 气瓶是一个立的无绝热层的薄壁密闭容器,瓶内二氧化碳的压力不仅与温度有关,而且与充装量有关。气瓶的公称工作压力,对于气体气瓶是指20℃时所充装气体的限定充装压力,充装量是以压力计量;对于盛装二氧化碳等高压液化气体的气瓶是指温度为60℃时瓶内气体压力的限定值,充装量是以重量计量的。若不按0.6kg/L标准充装,而采取**量充装,瓶内的气相空间相应减小,随着温度的升高,液态二氧化碳的体积相应膨胀,气相空间继续减小,终造成瓶内“满液”和气相空间消失。 表2 不同充装系数下的满液温度 充装系数/kg•L-1 0.790 0.750 0.688 0.664 满液温度℃ 18.1 21.8 26.3 28.4 瓶内出现满液现象,其压力不再是饱和蒸汽压,而是液态二氧化碳体积膨胀的胀力。此胀力远大于饱和蒸汽压。液态二氧化碳的体积膨胀系统较大,在-5~35℃范围内,温度每升高1℃,瓶内压力相应升高0.314-.0834MPa,所以赶装很*使气瓶赶压爆炸
长安销售二氧化碳
性能比较
一、 产气原理:
与碳酸氢钠或碳酸氢铵反应,其化学反应式为:
产生灭火用的二氧化碳气体。
相对于传统矿井灭火设备的优点:
只产生二氧化碳其它,不产生氧气等助燃成分;
整个反应过程为吸热反应,不产生高温
二、二氧化碳气体与传统灭火设备的比较:
矿井灭火介质主要为氮气与二氧化碳,产生氮气的设备为制氮机和燃油惰
气灭火装置,比较如下:
制 氮 机矿用制氮机分成深冷空分式、膜分离式、变压吸附式。
深冷空分式制氮机的特点是产气量大,氮气浓度高,但体积庞大,安装于地面,不能在井下使用。矿用井下移动式膜分离制氮装置和煤矿(地面)变压吸附(PSA)制氮装置上
列制氮机产气量中含有氧气浓度达3-5%,又因为采空区或火区原有氧气量和
外部漏风量的存在,不易达到《煤矿规程》*238条*2款关于"注入的
氮气浓度不小于97%"的规定,更难以达到《煤矿规程》解读本*238
条解读内容关于注氮防火的"采空区内氧气浓度不得大于7%"的规定和注氮
灭火的"火区内氧气浓度不得大于3%"的规定。此外,氮气轻于空气,易向
火区**部扩散,进而影响火区惰化效果,往往达不到灭火的目的。
燃油惰气灭火装置主要由DQ-150型、DQ-500型、DQ-1000型。该装置产气量大,适用于煤矿
井下快速灭火。但是,由于航空燃油燃烧不够充分,产生的气体中含有3-5%的
氧气和微量的CO,反应为发热反应,惰气的温度高达70多度。由于产气的过程
要燃烧大量的航空燃油,产生的氧气、CO、高温以及燃烧航空燃油导致整个产气过程是非常危险的。
性能比较表比较 燃油惰气灭火装置 制氮机 二氧化碳发生器
产气浓度 ≤93% ≤95% ≥98%反应的是否产生氧气 产生3-5%的氧气 产生3-5%的氧气
反应的是否产生有毒有害气体 产生CO 不产生灭火的气体温度 ≥70度 ≥50度 ≤30度
是否需要用电 需要用电 需要用电 *用电产气过程性 需要在矿井内燃烧航空煤油,过程危险且控制较难 较为
二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。在应用方面操作简单,适合自动焊和焊接。在焊接时不能有风,适合室内作业。
方法介绍
二氧化碳气体保护电弧焊(简称CO2焊)是以二氧化碳气为保护气体,
进行焊接的方法。(有时采用CO2+Ar的混合气体)。在应用方面操作简单,适合自动焊和焊接。焊接时抗风能力差,适合室内作业。由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。由于二氧化碳气体的0热物理性能的影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。但如采用焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。因此这种焊接方法目前已成为黑色金属材料重要焊接方法之一。
1)焊丝直径
焊丝的直径通常是根据焊件的厚薄、施焊的位置和效率等要求选择。焊接薄板或中厚板的全位置焊缝时,多采用1.6mm以下的焊丝(称为细丝CO2气保焊)。
2)焊接电流
焊接电流的大小主要取决于送丝速度。送丝的速度越快,则焊接的电流越大。焊接电流对焊缝的熔深的影响大。当焊接电流为60~250A,即以短路过渡形式焊接时,焊缝熔深一般为1mm~2mm;只有在300A以上时,熔深才明显的。
(3)电弧电压
短路过渡时,则电弧电压可用下式计算:
U=0.04I+16±2(V)
此时,焊接电流一般在200A以下,焊接电流和电弧电压的佳配合值见表2。当电流在200A以上时,则电弧电压的计算公式如下。
U=0.04I+20±2(V)
4)焊接速度
半自动焊接时,熟练的焊工的焊接速度为18m/h~36m/h;自动焊时,焊接速度可高达150m/h。
(5)焊丝的伸出长度
一般情况下焊丝的伸出长度约为焊丝直径的10倍左右,并随焊接电流的增加而增加。
(6)气体的流量
正常焊接时,200A以下薄板焊接,CO2的流量为10L/min~25L/min;200A以上厚板焊接,CO2的流量为15L/min~25L/min;粗丝大规范自动焊为25L/min~50L/min。
具体工艺参数
电流:一般为:150-350安培,常用规范为200-300安培。
电压:一般范围值:22-40伏特,常用规范为26-32伏特。
干伸长度:焊丝从导电嘴前端伸出的长度,一般为焊丝直径的10-15倍,即10-15毫米长。
焊接速度:每分钟焊接的焊缝长度,单焊道按时每分钟300-500毫米,个别达到25000毫米/分钟(比如截齿的焊丝用的LQ605),摆动焊接时,120-200毫米/分钟。
http://peng349656607.cn.b2b168.com

产品推荐