东莞二氧化碳生产 无色无味气体
  • 东莞二氧化碳生产 无色无味气体
  • 东莞二氧化碳生产 无色无味气体
  • 东莞二氧化碳生产 无色无味气体

产品描述

直径89-219mm 容积0.8L-40L 瓶体高度197-1315mm 瓶体重量1.6-48.2KG 壁厚3.2-5.7mm 材质37Mn 34CrMo4 工作压力15Mpa 20Mpa 测试压力22.5Mpa 30Mpa 标准GB/T5099.3 ISO9809-3 EN ISO9809-3 EN ISO9809-1 包装无缝钢瓶密封 执行标准国标 分子式CO2 用途工业/实验室 物理状态液态 性状无色无味 是否危险化学品 纯度99.995% 99.999% 等级优等 规格40L 类型低温储罐
基本简介
二氧化碳(英文名称:Carbon dioxide)是空气中常见的化合物,其分子式为CO₂,由两个氧原子与一个碳原子通过共价键连接而成。空气中有微量的二氧化碳,约占空气总体积的0.03%。二氧化碳能溶于水中,形成碳酸,碳酸是一种弱酸。由于空气中含有二氧化碳,所以通常情况下雨水的PH值大于等于5.6[1](CO₂本身没有毒性,但当空气中的CO₂**过正常含量时,会对人体产生有害的影响。)
性质
碳氧化物之一,是一种无机物,常温下是一种无色无味气体,且。密度比空气略大,能溶于水,并生成碳酸。(碳酸饮料基本原理)使紫色石蕊溶液变红,一定量的CO₂可以使澄清的石灰水(Ca(OH)₂)变浑浊,在做关于呼吸作用的产物等产生二氧化碳的试验都可以用到,还可以支持镁带燃烧。
本段构成原理
C原子以sp杂化轨道形成δ键。分子形状为直线形。非性分子。在CO₂分子中,碳原子采用sp杂化轨道与氧原子成键。C原子的两个sp杂化轨道分别与两个O原子生成两个σ键。C原子上两个未参加杂化的p轨道与sp杂化轨道成直角,并且从侧面同氧原子的p轨道分别肩并肩地发生重叠,生成两个∏三中心四电子的离域键。因此,缩短了碳—氧原子间地距离,使CO2中碳氧键具有一定程度的叁键特征。决定分子形状的是sp杂化轨道,CO₂为直线型分子式。二氧化碳密度较空气大,当二氧化碳少时对人体无危害,但其**过一定量时会影响人(其他生物也是)的呼吸,原因是血液中的碳酸浓度,酸性增强,并产生酸中毒。空气中二氧化碳的体积分数为1%时,感到气闷,头昏,心悸;4%-5%时感到眩晕。6%以上时使人神志不清、呼吸逐渐停止以致
空气中有微量的二氧化碳,约占0.039%。二氧化碳能溶于水中,形成碳酸,碳酸是一种弱酸。
二氧化碳平均约占大气体积的387ppm。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。二氧化碳常压下为无色、无臭、不助燃[1]、不可燃的气体。二氧化碳是一种温室气体因为它发送可见光,但在强烈吸收红外线。二氧化碳的浓度于2009年增长了约二百万分之一。
循环系统的变化
一定程度的PaO2降低和PaCO2升高,可外周化学感受器(颈动脉体和主动脉体),使心跳加快、心肌收缩力加强、血压升高;亦可反射性地引起交感兴奋,肾上腺髓质分泌增加,从而使心跳加快、心肌收缩力加强、血压升高,皮肤及腹腔内脏血管收缩,而心和脑血管扩张。这些变化具有代偿意义。一定程度的CO2潴留对外周小血管也有直接作用,使其扩张(肺、肾动脉除外),皮肤血管扩张可使肢体末梢温暖红润,伴有大汗;睑结膜和脑血管扩张充血。严重的缺氧和CO2潴留可直接抑制心血管和心脏活动,加重血管扩张,导致血压下降,心肌收缩力降低等不良后果。缺O2和CO2潴留均能引起肺动脉小血管收缩而增加肺循环阻力,导致肺动脉高压和增加右心负担。
呼吸衰竭常伴发心力衰竭,尤其是右心衰竭,其主要原因为肺动脉高压和心肌受损。发生机理与严重缺氧密切相关。高碳酸血症还可因酸中毒,加重对心脏的损害。
东莞二氧化碳生产
CO2潴留的表现
二氧化碳分压能较准确地反映呼吸功能状态。二氧化碳分压>6kPa为高碳酸血症,提示通气不足,示有CO2潴留,为呼吸性酸中毒;<5.99kPa,为低碳酸血症,提示通气过度,示CO2排出过多,为呼吸性碱中毒; pCO2>4.66kPa时可出现呼吸衰竭,>7.32kPa是诊断呼吸衰竭的标志之一;当二氧化碳分压升至10.64kPa以上,出现**的抑制,首先表现为反应迟钝、、定向力障碍,进而出现精神错乱、昏睡、半昏迷至昏迷,甚至发生。当二氧化碳分压升至15.96kPa时,几乎不可避免地出现昏迷,伴足底反射消失,瞳孔一般缩小,颅内压升高,危及生命,二氧化碳分压升高对病情的影响程度,与个体有明显差异,与CO2潴留产生的快慢有直接的关系。当CO2急剧潴留(急性呼吸衰竭),即使二氧化碳分压未**过10.64kPa,亦可出现昏迷。
主要表现:
一,呼吸困难 表现在频率,节律和幅度的改变,如**性呼衰呈潮式,间歇或抽泣样呼吸;慢阻肺是由慢而较深的呼吸转为浅快呼吸,呼吸肌活动加强,呈点头或提肩呼吸,**药物中毒表现为呼吸匀缓,昏睡;严重肺心病并发呼衰二氧化碳麻醉时,则出现浅慢呼吸,
二,精神 急性呼衰的精神较慢性为明显,急性缺O2可出现精神错乱,狂躁,昏迷,等,慢性缺O2多有智力或定向功能障碍, CO2潴留出现**抑制之前的兴奋,如,烦躁,躁动,但此时切忌用或,以免加重CO2潴留,发生肺性脑病,表现为神志淡漠,肌肉震颤,间歇,昏睡,甚至昏迷等,pH代偿,尚能进行日常个人生活活动,急性CO2潴留,pH7.3时,会出现精神,严重CO2潴留可出现腱反射减弱或消失,锥体束征阳性等,
三,血液循环系统 严重缺O2和CO2潴留引起肺动脉高压,可发生右心衰竭,伴有体循环淤血体
东莞二氧化碳生产
一种储存二氧化碳气的工具,一般使用在化学,,食品等行业。
按规格型号上可分为4L到40L不等,一般40L以下的使用在食品行业较多。
二氧化碳气瓶从规格型号上可分为:4L,5L,8L,10L,12L,15L,40L的。
一般像40L以下的都是使用在食品行业的较多,如:扎啤机,售酒机,酒店自酿啤酒设备,微型自酿啤酒设备,啤酒发酵教学试验设备,可口可乐的生产过程等。
二氧化碳钢瓶属高压容器,其临界温度为31.1℃,在临界温度以上,气体是不能液化的。若液体二氧化碳钢瓶温度**31.1℃,则无论压力多大,二氧化碳都始终保持气态而不能液化,钢瓶压力将急剧升高,以致有可能出现爆炸危险。因此当储运和使用钢瓶二氧化碳时,使用150kg/cm2或200kg/cm2级钢瓶,并经严格检查合格后才能应用,严格遵守原劳动总局“气瓶安全监察规程”中的有关规定,储运过程中严格防止曝晒,严禁敲击、碰撞、烘烤、不得靠近热源。   二氧化碳通过气瓶减压时,会吸收大量的热,以致使气瓶结霜甚至可能将阀蕊冻结住。当碳酸阀被冻结时,不能敲击或用火烘烤,只能用自来水淋洗给热。 


二氧化碳气瓶公称工作压力为15MPa,充装结束时的压力也不过是7-8MPa,远低于公称工作压力,为什*强调“严禁**装”,按0.6kg/L标准充装? 答:在瓶装气体中属于高压液化气体,其临界温度为31℃,当温度低于31℃时加压即可液化,当温度等于或**31℃,瓶内液态二氧化碳就转化为气态二氧化碳。 按0.6kg/L标准充装二氧化碳时,在温度接近31℃时,瓶内呈现的压力是气一液共存状态下,液体界面上的饱和蒸气为7.39MPa。当温度达到或**过31℃时,则发生液体向气体的相变,瓶内压力不再是二氧化碳饱和蒸气压的延伸,而是液态二氧化碳大量汽化而骤然上升的压力。此时表征瓶内的压力状况,实质上和气体一样。当温度继续升到54℃时,瓶内压力约增到15MPa,与气瓶公称工作压力相当。由于瓶装二氧化碳具有这些特点,为保证气瓶在充装、储存、运输和使用时的安全,应严格按规定的充装系统进行充装。 气瓶是一个立的无绝热层的薄壁密闭容器,瓶内二氧化碳的压力不仅与温度有关,而且与充装量有关。气瓶的公称工作压力,对于气体气瓶是指20℃时所充装气体的限定充装压力,充装量是以压力计量;对于盛装二氧化碳等高压液化气体的气瓶是指温度为60℃时瓶内气体压力的限定值,充装量是以重量计量的。若不按0.6kg/L标准充装,而采取**量充装,瓶内的气相空间相应减小,随着温度的升高,液态二氧化碳的体积相应膨胀,气相空间继续减小,终造成瓶内“满液”和气相空间消失。 表2 不同充装系数下的满液温度 充装系数/kg•L-1 0.790 0.750 0.688 0.664 满液温度℃ 18.1 21.8 26.3 28.4 瓶内出现满液现象,其压力不再是饱和蒸汽压,而是液态二氧化碳体积膨胀的胀力。此胀力远大于饱和蒸汽压。液态二氧化碳的体积膨胀系统较大,在-5~35℃范围内,温度每升高1℃,瓶内压力相应升高0.314-.0834MPa,所以赶装很*使气瓶赶压爆炸
东莞二氧化碳生产
CO2气体保护焊的工艺参数
CO2气体保护焊时,由于熔滴过渡的不同形式,需采用不同的焊接工艺参数
(1)短路过渡时的工艺参数 短路过渡焊接采用细丝焊,常用焊丝直径为Φ0.6~1.2,随着焊丝直径,飞溅颗粒都相应。短路过渡焊接时,主要的焊接工艺参数有电弧电压、焊接电流、焊接速度,气体流量及纯度,焊丝深出长度。
1) 电弧电压及焊接电流 电弧电压是短路过渡时的关键参数,短路过渡的特点是采用低电压。电弧电压与焊接电流相匹配,可以获得飞溅小,焊缝成形良好的稳定焊接过程。Φ1.2的一般参数为 电压 19伏;电流120~135。
2) 焊接速度 随着焊接速度的增加,焊缝熔宽、熔深和余高均减小。焊速过高,*产生咬边和未焊透等缺陷,同时气体保护效果变坏,易产生气孔。焊接速度过低,易产生烧穿,组织粗大等缺陷,并且变形,生产效率降低。因此,应根据生产实践对焊接速度进行正确的选择。通常半自动焊的速度不**过0.5m/min,自动焊的速度不**过1.5m/min。
3) 气体的流量及纯度 气体流量过小时,保护气体的挺度不足,焊缝*产生气孔等缺陷;气体流量过大时,不仅浪费气体,而且氧化性增强,焊缝表面上会形成一层暗灰色的氧化皮,使焊缝质量下降。为保证焊接区免受空气的污染,当焊接电流大或焊接速度快,焊丝伸出长度较长以及室外焊接时,应气体流量。通常细丝焊接时,气体流量在15~25L/min之间。CO2气体的纯度不得低于99.5%。同时,当气瓶内的压力低于1Mpa,应停止使用,以免产生气孔。这是因为气瓶内压力降低时,溶于液态CO2中的水分汽化量也随之,从而混入CO2气体中的水蒸气越多。
4) 焊丝伸出长度 由于短路过渡均采用细焊丝,所以焊丝伸出长度上所产生的电阻热影响很大。伸出长度增加,焊丝上的电阻热增加,焊丝熔化加快,生产率提高。但伸出长度过大时,焊丝*发生过热而成段熔断,飞溅严重,焊接过程不稳定。同时伸出后,喷嘴与焊件间的距离亦,因此气体保护效果变差。但伸出长度过小势必缩短喷嘴与焊件间的距离,飞溅金属*堵塞喷嘴。合适的伸出长度应为焊丝直径的10~12倍,细丝焊时以8~15mm为宜。
二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。在应用方面操作简单,适合自动焊和焊接。在焊接时不能有风,适合室内作业。
方法介绍
二氧化碳气体保护电弧焊(简称CO2焊)是以二氧化碳气为保护气体,
进行焊接的方法。(有时采用CO2+Ar的混合气体)。在应用方面操作简单,适合自动焊和焊接。焊接时抗风能力差,适合室内作业。由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。由于二氧化碳气体的0热物理性能的影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。但如采用焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。因此这种焊接方法目前已成为黑色金属材料重要焊接方法之一。
1)焊丝直径
焊丝的直径通常是根据焊件的厚薄、施焊的位置和效率等要求选择。焊接薄板或中厚板的全位置焊缝时,多采用1.6mm以下的焊丝(称为细丝CO2气保焊)。
2)焊接电流
焊接电流的大小主要取决于送丝速度。送丝的速度越快,则焊接的电流越大。焊接电流对焊缝的熔深的影响大。当焊接电流为60~250A,即以短路过渡形式焊接时,焊缝熔深一般为1mm~2mm;只有在300A以上时,熔深才明显的。
(3)电弧电压
短路过渡时,则电弧电压可用下式计算:
U=0.04I+16±2(V)
此时,焊接电流一般在200A以下,焊接电流和电弧电压的佳配合值见表2。当电流在200A以上时,则电弧电压的计算公式如下。
U=0.04I+20±2(V)
4)焊接速度
半自动焊接时,熟练的焊工的焊接速度为18m/h~36m/h;自动焊时,焊接速度可高达150m/h。
(5)焊丝的伸出长度
一般情况下焊丝的伸出长度约为焊丝直径的10倍左右,并随焊接电流的增加而增加。
(6)气体的流量
正常焊接时,200A以下薄板焊接,CO2的流量为10L/min~25L/min;200A以上厚板焊接,CO2的流量为15L/min~25L/min;粗丝大规范自动焊为25L/min~50L/min。
具体工艺参数
电流:一般为:150-350安培,常用规范为200-300安培。
电压:一般范围值:22-40伏特,常用规范为26-32伏特。
干伸长度:焊丝从导电嘴前端伸出的长度,一般为焊丝直径的10-15倍,即10-15毫米长。
焊接速度:每分钟焊接的焊缝长度,单焊道按时每分钟300-500毫米,个别达到25000毫米/分钟(比如截齿的焊丝用的LQ605),摆动焊接时,120-200毫米/分钟。
http://peng349656607.cn.b2b168.com

产品推荐